Q1.The table below contains five statements that refer to isotopes and some radium isotopes.

	223 88 Ra	224 88 Ra	225 88 Ra	226 88 Ra
Isotope with the smallest mass number	1			
Isotope with most neutrons in nucleus				
Isotope with nucleus which has the largest specific charge				
Isotope decays by β^- decay to form $^{\begin{subarray}{c} 225 \\ 89 \end{subarray}Ac$				
Isotope decays by alpha decay to form $^{220}_{86}\mathrm{Rn}$				

(a)		nplete the table by ticking one box in each row to identify the appropriate ope. The first row has been completed for you.	(4)
(b)	(i)	An atom of one of the radium isotopes in the table is ionised so that it has a charge of $+3.2 \times 10^{-19}$ C. State what happens in the process of ionising this radium atom.	
	(ii)	The specific charge of the ion formed is 8.57×10^5 C kg ⁻¹ . Deduce which isotope in the table has been ionised. Assume that both the mass of a proton and the mass of a neutron in the nucleus is 1.66×10^{-27} kg.	(1)

isotope =

(3) (Total 8 marks)

α pa	articles	
βра	articles	
γ ray	ys	
X-ra	ays	
	Type of radiation	Typical range in air / m
	β	
	Ρ	
	γ rays have a range of at least	
1		ed 0.5 m from a γ ray source detects a s it is moved a few centimetres further aw
1		
	Explain this observation.	

(c)	Following an accident, a room is contaminated with dust containing americal which is an α -emitter.	mı
	Explain the most hazardous aspect of the presence of this dust to an unprot human entering the room.	ected
		(2) (Total 6 marks)
Q3. (a)	Complete the following equation for beta minus (β⁻) decay of	
	strontium-90 (38Sr) into an isotope of yttrium (Y).	
	$^{90}_{38}$ Sr \longrightarrow $^{\cdots}$ Y + $^{\cdots}$ β^- + 0_0 \cdots	(3)
(b)	During β^- decay of a nucleus both the nucleon composition and the quark composition change. State the change in quark composition.	
		(1)
(c)	A positive kaon consists of an up quark and an antistrange quark $(u \overline{s})$. This decays by strong and weak interactions into three pions. Two of the pions have quark compositions of $(u \overline{d})$. The third pion has a different quark composition	ave
	(i) Name the unique family of particles to which the kaon and pions belon	g.
		(1)
	(ii) Tick the box corresponding to the charge of the third pion.	
	(") Then the box corresponding to the ondige of the tillia pion.	

		positive	negative		neutral			
								(1)
	(iii)		s have unusually lo why you would ex			case.		
								(1)
	(iv)	Name the excinteractions of	hange particles wh f the kaon.	nich are i	nvolved in	the stro	ong and w	eak
		strong interac	tion					
		weak interacti	on					(1) (Total 8 marks)
O4 A com	mon tv	one of smoke d	etector contains a	very sma	all amount (of ame	ricium-241	²⁴¹ Am
(a)			ber of each type o					
(α)	Dete		ber or each type o	Tidoleoi	i iii one am	icriolari	1 2 1 1 1100	icus.
		type c	f nucleon	n	umber			
		type c	f nucleon	n	umber			(2)
(b)	Ame		roduced in nuclea	r reactors	s through th	ne deca	ay of pluto	nium,
		the decay pro answer.	cess responsible f	or the pro	oduction of	amerio	cium-241.	Explain

An americium-241 nucleus decays into nuclide \boldsymbol{X} by emitting an alpha particle.	
Write an equation for the decay of the nucleus and determine the proton number and nucleon number of \boldsymbol{X} .	
nucleon number	
proton number	
The alpha radiation produced by americium-241 causes the ionisation of nitrogen and oxygen molecules in the smoke detector.	
State what is meant by ionisation.	
A friend who has not studied physics suggests that a smoke detector containing radioactive material should not be sold.	
radioactive material should not be sold. Use your knowledge of physics to explain why a smoke detector containing	
radioactive material should not be sold. Use your knowledge of physics to explain why a smoke detector containing	
	An americium-241 nucleus decays into nuclide X by emitting an alpha particle. Write an equation for the decay of the nucleus and determine the proton number and nucleon number of X . $\begin{array}{ccccccccccccccccccccccccccccccccccc$

Q5.A radioactive nucleus emits a β -. particle then an α particle and finally another β -. particle. The final nuclide is

Λ	an isotone of the original element	
^	an isotope of the original element	0

(Total 1 mark)

Q6.(a) The table below contains data for four different nuclei, P, Q, R and S.

Nuclei	Number of neutrons	Nucleon number
P	5	11
Q	6	11
R	8	14
S	9	17

nucleus

(1)

		nuclei and	(1
	(iii)	State and explain which nucleus has the smallest specific charge.	
			(2
			(-
	(iv)	Complete the following equation to represent $\beta^{\scriptscriptstyle -}$ decay of nucleus R to form nucleus $X.$	
		$^{14}_{6}R \rightarrow \dots X + \dots + \dots + \dots$	
			(3
(b)	(i)	The strong nuclear force is responsible for keeping the protons and neutrons bound in a nucleus. Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons, quoting suitable values for separation.	

Which **two** nuclei are isotopes of the same element?

(ii)

		(3)
(ii)	Another significant interaction acts between the protons in the nucleus of an atom. Name the interaction and name the exchange particle responsible for the interaction.	
	Interaction	
	Exchange particle	(0)
	(Total 12 m	(2) arks)